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THE CONNECTION BETWEEN THERMODYNAMIC ENTROPY AND PROBABILITY* 

V.L. BERDICHEVSKII 

Ergodic Hamiltonian systems with an arbitrary number of degrees of 
freedom n are considered. A relation is derived connecting the dis- 
tribution function of the system characteristics with the entropy. It 
is shown that as n-cu it reduces to Einstein's formula /l/. A 
variational principle forthedistribution function, which reduces to 
the maximum-uncertainty principle as n-m, is derived. The principle 
of maximum entropy for Hamiltonian systems is formulated. 

1. The thermodynamics of Hamiltonian systems. According to the Boltzmann program 
of the basis of thermodynamics, thermodynamic relations can be obtained by averaging the 
Hamilton equations. The first non-trivial problem which then arises is the problem of inter- 

preting entropy in terms of mechanics. Boltzmann's answer was the following equation: 

S=klnW (1.1) 

where k is a constant which depends on the choice of the units of measurements, and W is the 

number of microstates cooresponding to a specified macrostate. Formula (1.1) is of considerable 

heuristic importance, but it is not entirely complete, since the meaning of the number of 

microstates for a Hamiltonian system is somewhat obscure. A final answer was obtained by 

Gibbs /2/ and was subsequently investigated from new points of view by Hertz /3/ (the results 

obtained by Gibbs and Hertz are formulated below in modern terms). 

Einstein /l/ proposed the following interpretation of Boltzmann's formula (1.1). Suppose 

21, p . ., zk are parameters describing the thermodynamic system, and S(z,, . . ..zk) is the entropy 

of the system. In a state of thermodynamic equilibrium the system parameters fluctuate and 

have a certain density of the distribution function f(z,, . . ..zk). According to /l/ we have 

1 (21. . f ‘I zk) = const’exp s (q, . ., zk) (1.2) 

The constant in front of the exponent is determined from the conditions for normaliziny 

the distribution function. The discussions in /l, 4/, which indicate the correctness of Eq. 

(1.2), relate to system with a large number of degrees of freedom n and parameters which only 

differ slightly from the mean values. Below, for ergodic Hamiltonian systems, we obtain an 

exact formula which holds for any R and fluctuations of arbitrary amplitude. Einstein's 

formula (1.2) is obtained from the accurate one inthelimit as )2+00. 

The problem considered is intimately related to the reappraisal of the fundamentals of 

statistical mechanics which is going on at the moment. Earlier it was generally recognised 

that the laws of thermodynamics and statistical mechanics are due to the large numberofdegrees 

of freedom of the mechanical system performing a complex stochastic motion. The problem was 

that eseentially large n or stochasticity did not occur, since there were no physically 

interesting examples of systems with stochastic behaviour and finite n (with the exception, 

of course, of geodesic flow in manifolds of negative curvature, which are outside the field of 

view of physicists). The discovery of such systems (see /5-9/j made this question extremely 

important. The assertions formulated below show that ergodic Hamiltonian systems with any n 

(including small values of n) correspond to a large extent to the representations of both 

equilibrium thermodynamics and statistical mechanics. In this case some assertions (Einstein's 

formula and the principle of maximum uncertainty) require some modification, while in others, 

of several formulations which merge in the limit as n+m, we must choose one universal one 

which holds for all n (these include the definition of entropy and the second law of thermo- 

dynamics). 
We will start with a description of the necessary facts from the theory of Hamiltonian 

systems. 

Crgodic Hamiltonian systems. we will consider a mechanical system with generalized 

coordinates $(i= I,..., n) and generalized momenta pi. Suppose H(p,q, y) is the Hamilton 

function and y = ($1, . . . . d)are external parameters, the change in which corresponds to the 

change in the external conditions. The system is described by Hamilton's equations 
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(1.3) 

We will assume initially that the values of the parameters y are fixed. Then Eqs.Cl.3) 

have a first integral H(x,y)= col~st (we henceforth denote by x the points of phase space 
of the variables p,@ and each trajectory starting from the surfaceofthe energy level H (XV 
y) = const, lies completely on it. The surfaces of the level are assumed to be compact, and 
bound a finite volume. 

Suppose Z is a certain surface of the energy level. Each point X on 2 in a time t 

travels along a trajectory of system (1.3) to a certain point .rlr and correspondingly each 
region A on 2 transfers to a certain region At. The Euclideans of the area of the regions A 
At, generally speakzng, are different, but they can be established using Liouville's theorem 

(see, for example, /lo/, the quantity s IVxH(eldo is preserved, where da is the Euclidean 
A 

of the element of area, while the modulus of the vector V,U = ~aH~~~~~ is also understood 
in the Euclidean sense. Hence, if we introduce a measure of the region A, normalized to unity, 
by means of the formula 

(I.41 

it will be invariant under shifts along the trajectories of system (1.3). 
The Hamiltonian of the system is called ergodic if there are no other invariant measures 

in it. The condition of ergodicity is essentially the most compact formulation of the fact 
that (almost) every trajectory of the system winds round the whole isoenergetic surface and 
no room can be found on any part of it. 

For ergodic Hamiltonain systems the Birkhoff-Khinchin theoxem holds (see /7, lo/): the 
time-average and the measure-average are identical, i.e. for any function (p(X) and (almost) 
any trajectory 

(1.5) 

As a rule, the proof of the ergodicity of specific mechanical systems encountered in 
mechanics and physics is an extremely complex mathematical problem (the results obtained up 
to the present time are collected in /7/j, and hence, we can take as the basis for constructing 
statistical mechanics, instead of other hypotheses of a physical nature, which one is obliged 
to do all the same, the assumption that the system considered is ergodic, bearing in mind the 
consequences to which this leads. 

Entropy. The term "entropy" is used in science in several different meanings (we may 
mention the corresponding ideas in phenomenological thermodynamics, information theory, the 
theory of dynamic systems and topology). Our aim is to determine the entropy of a Hamiltonian 
system so that it most accurately corresponds to the entropy of phenomenoloqical thermodynamics. 
To do this we will consider an example - an adiabatically insulated vessel with a gas. We 
will take the following Hamiltonian system as the microscopic model of the gas: a large number 
of absolutely solid spheres colliding absolutely elastically with one another and with the 
walls of the vessel. The spheres model and molecules of a gas and the elastic collisions 
with the walls correspond to the assumption that the system is adiabatically insulated. We 
will slowly change the volume of the vessel V. Then work is done on the gas and its energy 
E is changed. In accordance with the laws of thermodynamics a function s(E, V) exists 
called the entropy which remains constant during this process. 

In the Hamiltonian system a slow change in the parameters y, which occurs in the 
Hamilton function corresponds to the change in the volume, while the function of the energy 
of the system E and the parameters y, which does not change when there is a slow change in y, 
corresponds to the entropy. In the theory of Hamiltonian systems such functions are called 
adiabatic invariants. In erqodic Hamiltonian systems there is an adiabatic invariant, namely, 
the volume I' of the region of phase space bounded by the surface H (2, Y) = E 

r(E,y)= y Px (1.6) 
H(x,‘!WE 

This assertion is in fact contained in Gibbs' results /2/ and was established once again 
and first used as the fundamental initial assertion of Hertz's statistical mechanics /3, ll/ 
(see also /12/j. An accurate mathematical formulation and proof can be derived from Anosov's 
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averaging theorem /13/, and is given independently 

invariants are functions of r (this assertion was 

Thus the entropy of the Hamiltonian system is 

established below. 

in /14/. All the remaining adiabatic 
accounted in /14/). 

a certain function of I'; its form is 

Temperature. We will calculate the mean value along the trajectory of the system 
(denoted by the symbol (.)) of the quantity xi8HldXj (the subscripts i and j on z take 
values of 1,...,2n). According to (1.5) we have 

(1.i) 

(aH/ilxj) / C,H 1-l are the components of the unit vector of the external normal to Z, and 
hence we can change in the numerator in (1.7) from integration over the surface to integration 

of the volume using Stokes' theorem. The integral over the volume is equal to J?hil. We can 
establish the following relationship for the denominator in (1.7): 

aI- (E, Y) _;,=pH:-~do 

Hence, we obtain for the average value of (tiaHl3xj) 

Eq.cl.9) contains much important information. Henceforth we will only require one of 
its corollaries, which is obtained If we substitute as xi in (1.9) the momenta 

<x*~)=*Rii 
I 

(1.8) 

(1.9) 

<kg>=. .=<P”$>=& (1.10) 

For Hamiltonian functions that are quadratic in the momenta the quantity (p,i?H;dp,) has 

the meaning of twice the kinetic energy taken over the first degree of freedom, and Eq.(l.lo) 

denotes that in ergodic Hamiltonian system the mean kinetic energy taken over each degree of 

freedom is the same. This quantity, by definition, is called the temperature of the system 

T. 
A comparison of the equation T = r (r3r/i?E)-l and the thermodynamic relation 

IIT = X3 (E, y),‘8E (1.11) 

shows that Eq.(l.ll) will hold for Hamiltonian systemsifthe entropy of the system is given 

by the equation 

S = In r (E, IJ) +- const (1.12) 

In text books on statistical mechanics another definition is usually given of theentropy: 

S = lo(AEari8E). where AE is a certain energy range defined in a special way. For "proper" 

systems as ?Z+o3 this definition agrees with (l.lZ), but they are different for finite 

values of n. Statistical mechanics, based on Eq. (1.12), was described by Hertz in the text 

book /ll/, but, unfortunately, this had no influence on the modern form of statisticalmech- 

anics. Of the scores of courses on statistical mechanics known to the author, formula (1.12) 

is only given in /15/ (without any mention of the adiabatic invariance of r), while in /16/ 

it is discussed in a single problem. On the other hand, relations (1.7)- (1.10) can be found 

in practically all courses, often with facts which only hold for large n. 

2: The distribution function of the parameters. Consider any characteristic 

@ of the system, which is a smooth function of the generalized coordinates and momenta: 

CT, = 0 (I). The probability that the values of CD lie in the range (2, z f dz), which is equal 

to the fraction of the time which the function @(x1) spends in this interval, is equal to 

the integral (1.4) in which A must be understood as part of the surface z, defined by the 

inequalities z ,< a(r).< z + CEz. This fact can be derived from the Birkhoff-Khinchin theorem 

(1.5) (see, for example, /lo/). We will denote by r(E,z, y) the volume of the region in 

phase space bounded by the surfaces EZ(s, y)< E, (P(.z).<z (we assume that the hypersurfaces 

Q(s)= z are transversal to the surface of the energy levels If (.r, y) = I?), and we let f (z) 
be the distribution function density of the quantity CD. 

The following formula holds: 

m- (E, 2, Y) f(z)= aEdz /Ep (2.1) 
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The function f(z) depends, of course, on E and y, but this is not indicated in the 

notation. 
Before proving (2.1) we will make a few preliminary observations. When 5 varies in the 

range H(z,Y) <E, the value of Q,(z) changes in the range Ix-, r+], z- = min Qt (z), z+ = UlZtX 
x: EI(x, y)SE x: W(X, y)<E 

Q, (4. Hence, the function r(E,z, Y) is equal to zero when z Q z-. When z>,z+ the limitation 

@ (2) < 2 holds for all o inside the isoenergetic surface, and hence the function r (E, 2, Y) 

is constant with respect to z and is equal to f (E, Y). Consequently, f(z) =O when 2 <z- 

Or t>z*r as it should be. Further, integrating (2.1) with respect to z, it can be shown 
that the following normalization condition is satisfied: 

(2.2) 

We will now prove (2.1). Consider a volume of the region enclosed between the surfaces 
H(z,Y) = E, H&Y)= E + AE, (D(Z)= Z, @((;) = Z+ AX. It is obviously equal to r (E + A.E. B + Ar, u) - 

I'(E, z+ As, Y) -(r (E+ AE, a, y) - T (E, z, y)) = AEA.&I'l8E&. On the other hand, this same volume is 

equal to f(z) AzAEdf (E, y)/dE. Equating both quantities we obtain (2.1). 
If there are several independent characteristics of the system @, (& . . ., (01, (z), then, 

denoting the volume of the region defined by the limitations H (5, Y) d E, @'1 (5) < z,+ . . ., 

@k (x) < zk by I? (E, 21, . . .t zk, Y) I we arrive in exactly the same way at the following formula 
for the distribution function density of the quantities @l,...,@,: 

A comparison of the accurate Eqs.(l.l2) and (2.3) suggests the following program for 
proving Einstein's formula. The numerator in (2.3) can be regarded as the volume of a (Zn- 
(k + l)]-dimensional region, defined by theconstraints H = E, @‘1 = I%,...,@~ = zg. If we SUC- 
teed in constructing an auxiliary Hamiltonian system containing ergodic motion in this region, 
the volume must be proportional to exps, where S is the entropy of the auxiliary system, 
and we arrive at formula (1.2). In fact, as will be shown below, the quantity akr (E, z, y)ih, 
. . * azE will be an adiabatic invariant, and hence 

8% (E, 2, Y) 
aq . . az, =expS(E,z.~) 

and the correct formula has the form 

(2.5) 

It can also be rewritten in a form which makes its connection with Einstein's formula 
obvious 

f (z) = (al? (E, y)i8E)-resp S (E, z, y) t 1x1 SJZ) (2.6) 

where Sg 3 6% (E,z,y)iaE. For typical Hamiltonian systems of statistical mechanics, as n--, a7 
the entropy increases in proportion to n, while the inverse temperature ss is limited, and 
hence the value of 1nSs can be neglected compared with S and (2.6) reduces to Einstein's 
formula (1.2). 

We will now prove Eq. (2.5). 

3. The entropy pf Hamiltonian systems with bounds. Consider a system with a 
Hamiltonian function H(r,y) and bounds (D, (I) = 21, . . . , @k (I) = i?k. If (Da (r) (a = 1, 2, . . ., k) 
depends only on the coordinates, these aretheusualkinematic limitations. If @,(r) also 
depend on the momenta, the corresponding limitations, generally speaking, are non-holonomic. 
The theory of such systems is investigated in vacuum mechanics (see /17/j. The trajectories 
of the system are found by solving the following system of equations (with respect to repeated 
indices of summation) 

The Lagrange multipliers ha are the required functions of time defined from the conditions 
d@,ldt = 0. These conditions, using (3.11, can be rewritten in the form 

d@a 
~=[@~.HJ+P[@@,@~]=O (3.2) 
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where I,1 are Poisson brackets. Eqs.(3.2) can be regarded as a system of linear equations in 
ha. We will assume that the determinant of system (3.2) is non-zero: 

det II 1% %I II # 0 (3.3) 

Then ha in view of (3.2), will be universal functions of the coordinates of phase space, and 
system (3.1) becomes the usual autonomous system of differential equations. 

Condition (3.3) imposes considerable limitations on the choice of the system parameters. 

In particular, their number k must be even, since the matrix with elements [Q%., q31 is skew- 
symmetric and its determinant is identically equal to zero for odd k. 

If h" are found from (3.2), the functions @, are the first integrals of system (3.1). 
Moreover, there is also an energy integral, since 

CM/at = hyzf, a&] (3.4) 

and, convoluting (3.2) with h" and taking into account the fact that in view of the antisym- 

metry of I@,,cD,l their convolution with a symmetrical object h"hfi is zero, we obtain that 
the right-hand side of (3.4) is also equal to zero. 

We will assume that Eqs.(3.1) do not have other first integrals apart from R and @_'a, and 

the motion in layers H = const,O, = const is ergodic. We will also assume that the phase 
volume does not change for motion along the trajectories of system (3.1), i.e. 

This relation can be rewritten in the form 

[h", @,I = 0 (3 r,) 

Here h" are functions of the coordinates and momenta determined from the system of Linear 

Eqs.(3.2). Eq"(3.5) by convention is identically satisfied and, consequently, imposes ad- 

ditional limitations on the possible choice of the functions %. 

We will obtain an invariant measure on the layers I$ = const,@,, = const. We will introduce 

the functions Y,,(z) (11 = 1, . . ..rn.m = 2n - (k + 1)) so that the quantities E = H (CZ, y), 2% =~ 

%I (4, L, = Y, (-g can be regarded as curvilinear coordinates in phase space. The transform- 

ation of the coordinates ~-+(~,,!?,a) can be reversed and written in the form 5+ = xi (5, E, 

2, Y). We will denote by A the Jacobian of this transformation 

Here et,. jk are the Levi-Civita symbols. Since the phase volume d2"x is invariant 

under a shift along the trajectories, and dE, dz,, . . ., dzh- are also invariable, we see from 

the equation d2”x = Ad”cdEd’z that ,AflL will be an invariant measure. It obviously does 

not change for any one-to-one change in the coordinates t-9 5'. The time-averages for each 

function cp(z), in view of the ergodicity, are identical with the average over the invariant 

measure 

(3.7) 

Suppose the parameters y"(a = 1, . . ..s) vary slowly. We will obtain the rate of change 

of the energy of the system. We had from (3.1) 

dH i3H dya 
dt=ayUdl 

Averaging Eq.(3.8) over time, we obtain, in view oftheergodicity of the system, 

+<+_>_!g 

Eq.(3.9) can be proved rigorously using Anosov's averaging theorem /13/. 

We will show that Eq.(3.9) denotes the time-invariance of the quantity 

akr (E, 2, I/) 
E 

a~, . . ask 
” 

(3.8) 

(3.9) 

(3.10) 

which has the meaning of the volume of the region situated on a (Zn- k)-dimensional surfaces 

CD, (4 = ZCZ and bounded by the surface H(s, y).< E (for simplicity we have assumed that the 

volume of the region H = 0 is zero). 

We will denote by A,the right-hand side of (3.6) in which the quantity &2/8E is 
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replaced by 8x"/@". Since axilay“ + 8xiiaE~8Nlaya = 0, the equation A,, = -AdH18ya holds. 

The following identity can be verified by direct substitution: 

8Aldya = aA,laE (3.11) 

We will differentiate (3.10) with respect to y". Using (3.11) we have 

E 
ax+lr (E z y) 9 v 

az, . . . aataya 
= dm;EdE$+(\:d+-= s s 

sA,&=+ jA$d*‘i 
il 

(3.12) 

Moreover, as follows from (3.10), 

ah-+v (E, z, y) 

azl. . d+afz = Ad*&' 
s 

(3.13) 

We can find the average ~~~j~~'~ using (3.71, (3.12) and (3.13'~ 

(3.14) 

The assertion follows from (3.9) and (3.14). 
By defining the entropy of a system with constraints S(E,Z,!_J) as In @I' (E, z, y)/&, . . . 

&, i.e., the logarithm of the volume of the region on the surface (Da=za bounded by the 
surface H(s,y)=E, we obtain Eq.(2.5). 

Note. We can introduce the so-called conventional entropy for which Einstein's formula 
(1.2) holds (see /18, 19/j. The definition of the conventional entropy is essentially 
equivalent to the postulation of Einstein's formula and the connection between the conventional 
entropy and the dynamics of the system is not completely clear. 

we willnowdiscuss how important are the assumptions made in deriving (2.5). If we 
dispense with the condition of the invariance of the phase volume (3.51, then in the case of 
the general position the quantity (3.10) would not be an adiabatic invariant; an adiabatic 
invariant can be constructed but the phase density p - the solution of the equation 
a(pp;)//a~~ f d (p~'*)l+ = 0, would not occur in it, and relation (2.5) would look more complicated. 
Condition (3.3) is more important. Consider the simplest system for which this condition is 
not satisfied, namely, a system where the single constraint CD (s) = 2. Note that the quantity 

D,,HI+ 0, unlike in the initial system, would be the additional integral Q, = const and 
it would be ergodic on the surfaces H = const. Me start the trajectory from a point on the 
surface H = E, cf, = z. In the caSe of a common position I@,H] f: 0 at this point and since 
d@/dt = FD,, HI, the trajectory descends from the Surface Q = .z. The trajectory remains on 
the surface only if the initial point lies on the submanifold [a, H] = 0. Hence, we will 
return to the case with an even number of constraints Qt, = @ = z,@, =i@,Hl = 0. 

The problem arises as to how to connect the distribution function of one parameter with 
the entropy. This is obviously impossible to do using a relation of the type (2.5). One 
cannot see in all cases how to construct the corresponding auxiliary Hamiltonian of the system. 
However, one can always proceed as follows: in addition to the parameter @I being investigated, 
one introduces one more Qfp so that W,, @*I # 0 and Eq. (3.5) is satisfied (this can be done, 
for example, by determining Qz from the equation [UJ,, @,I = I), and then obtainingtheentropy 

S (E, 21, %r $1, and from it, using Eq.(2.5), constructing the distribution function f (z,,z&. 

By integrating the latter with respect to zp we obtain the connection between the distribution 
function of the parameter .zI and the entropy. 

4. Example: a gas under a piston. Consider an adiabatically insulated vessel with 
a gas, closed with a piston. A given force P acts on the piston. We will fix the coordinate 
a of the piston; it is required to obtain its distribution function. Using the procedure 
described above we will construct the distribution function of two quantities, one of which 
is the piston coordinate a and the other of which is the momentum of the piston A. The 
Hamilton function of the "gas + piston" system is G= 8 (p,q, oj +- Pa-f- AV(Zm), where H(p,q* 4 
is the Hamilton function of the particles of the gas, m is the mass of the piston, H>O,P>O, 
a>O. The motion of the system takes places on the surface GeE in the phase space of 
the variables {p,q,A,~}. We will put UJ~= a, @*= A, in which case i@z,@gj =i and the system 
of Eqs.(3.2) takes the form h= = -A/m, h' = -P - aHtan; conditions (3.5) are satisfied ident- 
ically. 

We will obtain the entropy of the system with specified values of Q, and @$, To do this 
we must take a region G<E in a plane inthephase space (p.9, A,a). defined by the equations 
0 = ap, A = Ao, and calculate the logarithm of its volume f. The volume r is obviously equal 
to the volume of the region in the space of the variables fP> e) bounded by the surface 
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H(p, q, a,,) = E - Pa, - Ao2/(2m). Hence, the entropy of the system with constraints can be expressed 
in terms of the entropy of the gas in the vessel S,(E,n) using the formula S (E, a, A) = Sg (E - 
Pa - Azi(2m), a). From Eq. (2.5) we have 

f (a, A)= coast& esp S,(E - Pa - A*:(h), CL) (4.1) 

The distribution function of the coordinates of the piston can be found by integrating 

(4.1) 

I m(~--P”) 
1 (a) = const 

s & esp sp (E - Pa - A"/(2rn), a) d.4 (4.2) 
0 

Both formulas (4.1) and (4.2) hold for a large number of gas particles under the piston 

(classical gas dynamics), and also for a small number of particles. In the first case, we 
can obtain a Gaussian distribution from (4.2), in the second case it does not occur, and the 
fluctuations in the position of the piston will not be small, while the average value is not 
the same as the most probable value. 

5. Variational principles for the distribution function. Consider a stationary 

point of the functional (the parameter y in the entropy is omitted) 

I@(z)) = s exp S (E(z), z)d"z 

on the set of functions E (z) and f (S)? which satisfy the conditions 

j E(z) f (2) dkz = E, [ f (2) d’r = 1, f (z) > 0 (5.1) 

The function f(z) corresponding to the stationary points of the functional I satisfies Eq. 

(2.5), as can easily be verified. 

We will give the corresponding duality formulation. We will denote by R&z) the Young- 

Fenchel function ezp s(E,z) of the energy E 

R (h, z) = s”pE (iE - exp S (E, i)) 

At the stationary point of the functional 

s R (sf@), 2) d"z-En 

with respect to all numbers n and functions f(z) which satisfy the second constraint (5.1), 

Eq.(2.5) is satisfied. 

The assertions formulated for systems in a thermostat reduce in the limit as ~-PCS to 

the principle of maximum uncertainty, well-known in statistical mechanics. 

6. The principle of maximum entropy for Hamiltonian systems. In connection 

with the above the following question arises: can we state an analogue of Gibbs' principle 

(the principle of maximum entropy) for ergodic Hamiltonian systems for any choice of the par- 

ameters 0a and for finite n? Below we give a positive answer to this question (in fact we 

discuss the stationarity of the entropy), but, in the corresponding variational principle, 

another entropy occurs - not the entropy of a system for fixed values of the parameters which 

occurs in Eq.(2.5), but the entropy of the system for fixed mean values of the parameters. For 

the latter, relation (2.5) does not occur. 
We will impose the following constraint on the system with Hamiltonian function N(z,y): 

A 
I- 

e 
\ 

CD_ (zJ dt = Za (6.1) 
; 

The equations describing this system have the form (3.1), where ha are numbers found 

from conditions (6.1). When 0 changes, system (3.1) preservesits form, but the values of the 

numbers ha change. If we allow 9 to tend to infinity, the left-hand side of (6.1) reduces 

to the mean value of the functions @, along the trajectory <Q,>, while the Lagrange multi- 

pliers ha will be given by the equations 
t@,) = i, (6.2) 

We will assume that the hypersurfaces ~rH(z,y)+ Xa(@,,(z)-I,)= E are compact and bound 

a finite volume r (E. A,?) (for simplicity the dependence of r (E,h,E) on y is not indicated 

in the notation, since it is not important in what follows). This assumption specifies a 

certain region of permissible values of the constants hn, ia. We will denote by D the region 

of those values of la, ia in which we also have i3rlaE =$= 0. 
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Suppose the motion on the hypersurfaces G=const is ergodic. In the same way as for 

(3.12) we can prove the equations 

ar (E, L E) s aAa = -_ 
(6.3) 

In addition, according to the Birkhoff-Khinchin theorem 

It can be seen from (6.3) and (6.4) that the relations for determining ka (6.2) can be 

rewritten in the form ar (E,ii,T)/aka= 0. Hence, the required values of ha are stationary points 

of the function r(E,i,E) with respect to Xa. we will assume that there is one stationary 

point h, (E, 0, in D, and we will determine the entropy of the system for fixed mean values of 

the parameters from the equation S (E,Z) = In I‘ (E,ho (E,f),E). This quantity is obviously an adiabatic 

invariant. 
The following variational principle holds: a stationary point of the entropy S (E,I) with 

respect to I corresponds to the true mean values of the parameters % * 
To prove this we note that the function I'(E,h,E) can be represented in the form r (E, 1, 

E) = r. (E + h”f,,h), where r0 (E,h) is the volume of the region of phase space bounded by the 

surface H(=,~) +)."Q,(~)= E. Hence, the equations for ho have the form 

we will write the condition for .S(E,E) to be stationary with respect to f as 

(6.5) 

It follows from (6.5) and (6.6) that at the stationary point with respect to f h,U = 0, 

hence G= H, and according to (6.4), <Q,,> is identical with the true mean values of @'a 
(i.e. along the trajectory of the initial system). 

Bear in mind that the entropy for fixed mean values of the parameters, unlike the entropy 

for fixed values of the parameters, has meaning for any number of parameters 

even), in which case constraints of the type (3.5) are also unimportant. 
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3. 

4. 
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6. 
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THE ASYMPTOTIC FORM OF THE STATIONARY SEPARATED CIRCUP~FLUENCE OF A BODY AT 

HIGH REYNOLDS NUMBERS* 

S.I. CHERNYSHENKO 

An asymptotic theory of the stationary separated circumfluence of bodies 

at high Reynolds numbers, Re, is constructed. It is shown that the 

length and width of the separated zone (SZ) is proportional to Re and 

that the drag cofficient is proportional to Re-'. A cyclic boundary 
layer is located around the separated zone with a constant vorticity. In 
the scale of the body, the flow tends towards a Kirchhoff flow with a 

velocity on a free line of flow of the order of Re-'1% which satisfies 

the Brillouin-Villat condition. 

A review of the attempts which have been made to describe the two- 

dimensional separated circumfluence of a body at high Reynolds numbers is 

given in /l, 2/. Certain features of the asmyptotic structure of the 

solution based on qualitative arguments were pointed out in /3, 4/. The 

corresponding shape of the separated zone was calculated in /5/. However, 
no complete theory was constructed in these papers. The appearance of the 

numerical calculations in /6, 7/ stimulated further investigations and a 

model with a non-zero jump in the Bernoulli constant on the boundary of 

the separated zone was proposed in /0/. A number of hypotheses concerning 

the limiting structure of the flow were put forward in /9/. 

In the solution obtained below the flow in the scale of the body is 
described as in /l, 2/ but the velocity is of the order of RedA. The 

flow characteristics in this zone are correspondingly renormalized. The 
flow in the scale of the separated zone corresponds to the assumptions 

made in /3, 4/. Unlike in /l-4/, the flow in the scale of the body is 

not directly combined with the flow in the scale of the separated zone. 

There are several embedded zones and the possibility of uniting these 

ensures the selfconsistency of the expansion. Moreover, the cyclic 

boundary layer on the boundary of the separated zone plays an important 

role. 

1. Let us transform to dimensionless variables by employing the characteristic size of 

the body and the velocity at infinity as the scales. As Red x), let the length and width 

of the separated zone tend to infinity while remaining of the same order. Then, in the limit, 

the flow in the scale of the separated zone will be a vortex potential flow /lo/. According 

to the Prandtl-Batchelor theorem, the vorticity is constant in the detached domains iFig.1). 
.- 

*Prikl.Matem.Mekhan.,52,6,958-966,1988 


